Magnesium Oxide doped Lithium Niobate (MgO:LiNbO3)

Material
MgO:LiNbO3

Magnesium Oxide doped Lithium Niobate (MgO:LiNbO3) possesses a combination of excellent electro-optical and non-linear optical properties (transparency in 0.4 – 5 µm spectral range, high nonlinear optical coefficient and laser radiation resistance) with exhibiting mechanical and chemical stability. It has similar effective nonlinear coefficients, optical and physical properties as pure LiNbO3.

The damage threshold of MgO:LiNbO3 is much higher than that of pure LiNbO3 single crystals (> 200MW/cm2 (@ 1064nm, 10ns for pure LiNbO3 and >300MW/cm2 @ 1064 nm, 12ns for MgO:LiNbO3), because the doping of monocrystals with MgO in the range of 4 to 7 mol% suppresses the photorefractive damage. MgO:LiNbO3 is characterized by noncritical phase matching (NCPM) at room temperature and can achieved angle tuning SHG of Nd:YAG and Nd:YLF laser. MgO:LiNbO3 is commonly used for electro-optical modulation (EOM Q-switches), high power frequency doublers (SHG), mixers (SFG), optical parametric oscillators (OPO) and amplinbo3iers (OPA) and integrated waveguides. MgO:LiNbO3 possesses a combination of excellent electro-optical and non-linear optical properties (transparency in 0.4 – 5 µm spectral range, high nonlinear optical coefficient and laser radiation resistance) with exhibiting mechanical and chemical stability. It has similar effective nonlinear coefficients, optical and physical properties as pure LiNbO3.

The damage threshold of MgO:LiNbO3 is much higher than that of pure LiNbO3 single crystals (> 200MW/cm² (@ 1064nm, 10ns for pure LiNbO3 and >300MW/cm² @ 1064nm, 12ns for MgO:LiNbO3), because the doping of monocrystals with MgO in the range of 4 to 7 mol% suppresses the photorefractive damage. MgO:LiNbO3 is characterized by noncritical phase matching (NCPM) at room temperature and can achieved angle tuning SHG of Nd:YAG and Nd:YLF laser

MgO:LiNbO3 is commonly used for electro-optical modulation (EOM Q-switches), high power frequency doublers (SHG), mixers (SFG), optical parametric oscillators (OPO) and amplinbo3iers (OPA) and integrated waveguides.

Typical Applications/Devices for Mg:LiNbO3:
SHG und OPO pumped by Nd:YAG laser
Electro-optical devices
SAW (surface acoustic wave) devices
Eigenschaften
Optische Eigenschaften
Transmissionsbereich in nm
320 ‐ 5600
Brechungsindex @1300 nm
ne=2,146

no=2,220

Reflexionsverluste in % an 1 Oberfläche @ 633nm
14,6
optische Homogenität in 1/cm
5·10-5
NLO Koeffizienten in pm/V
d33= 34,40

d31=d15= 5,95

d22= 3,07

optische Zerstörschwelle in MW/cm2 (10ns)
300
Absorptionsverluste in %/cm @ 1064 nm
< 0,1
Physikalische Eigenschaften
Dichte in g/cm3
4,64
Schmelzpunkt in °C
1253
Spezifische Wärmekapazität in J/(kg · K)
628
Thermische Leitfähigkeit in W/(m · K) @25 °C
4,19 (⊥ c-Achse)

4,6 (∥ c-Achse)

Thermische Ausdehnung in 1/K @25°C
14,8 · 10-6 (⊥ c-Achse)

4,1 · 10-6 (∥ c-Achse)

Dielektische Konstante @ 298K, 100kH
82
Wasserlöslichkeit in g/100g
unlöslich
Mohs-Härte
5
Knoop-Härte in kg/mm²
630
Materialtyp
Einkristall, synthetisch
Kristallstruktur
hexagonal
Gitterkonstanten in Å
a = 5,15

c = 13,86

Elastizitätskonstanten in GPa
C11 = 202

C12 = 55

C13 = 71

C14 = 8,3

C33 = 242

C44 = 60,1

Elastizitätsmodul (E) in GPa
170
Schubmodul (G) in GPa
68
Kompressionsmodul (K) in GPa
112
Poissonzahl
0,25
Spektrale Eigenschaften